Biotechnology program Outcomes, Program Specific Outcomes and Course Outcomes

Biotechnology Program Outcomes

- 1. PO1 Equip the students with the laboratory skills in biotechnology.
- 2. PO2 Understanding of professional and ethical responsibility .
- 3. PO3 Grasp of basic and advanced knowledge on various domains of biotechnology.
- 4. PO4 Students develop global competencies in the area of basic and applied biological sciences.
- PO5 To enrich students knowledge and train them in various branches of biotechnology such as genetic, molecular biology, biochemistry, Immunology, fermentation technique, environmental biotechnology and tissue culture techniques.
- 6. PO6 Awareness of contemporary issues that can be mitigated or supported through life science knowhow and biotechnology skills.
- 7. PO7 Recognition of the need for and an ability to engage in life-long learning.
- 8. PO8 Ability to work in team towards solving broad societal and national issues.

Program Specific Outcomes

- 1. PSO1 To bestow the students with all the research skills required to work independently.
- 2. PSO2 To develop scientific temperament and social responsibilities in the students.

3. PSO3 - To provide students with the concepts and research approaches for their higher career in the field of biotechnology and develop their scientific interest.

4. PSO4 - To impart in-depth practical oriented knowledge to students in various thrust areas of biotechnology.

5. PSO5 - As biotechnology is an interdisciplinary courses, empower the students to acquire technological knowhow by connecting disciplinary and interdisciplinary aspects of biotechnology.

B.Sc I YEAR (I SEM)

S. No.	Paper	Paper Name	Course Outcome	
	No.			
1.	I I Introduction to		CO1 - Understanding of the principles and	
		Biotechnology	practices of biotechnology.	
			CO2 - Biotechnology is the use of an organism, or a	
			component of an organism or other biological	
			system, to make a product or process.	
			CO3 - Understanding concepts biotechnology in	
			Agriculture ,food industry, pharmaceutical industry,	
			animal sciences and chemical industry.	
2.	II	Biochemistry I	CO1 - Inculcate an understanding of the function of	
			biological molecules through the study of their	
			molecular structures and interaction with other	
			biomolecules.	
			CO2 - Inquisitiveness to find application of	
			Biochemistry in medical and biological field	
			settings.	
			CO3 - Useful knowledge of the chemistry of	
			formation of various bonds and structure.	
			CO4 - Study about the 3D structure of a molecule	
			and importance of studying the exact position of a	
			particular group in a molecule.	
			CO5 - Students will be acquainted with the	
			knowledge of structure, function and interaction of	
			protein, nucleic acid, carbohydrates and lipids.	

B.Sc I (II SEM)

S.No.	Paper No.	Paper Name	Course Outcome
1.	III	General	CO1 - Ability to explain core the oretical and
		Microbiolog	practical principles of relevance to history,
		У	structure, function and diversity of microorganisms.
			CO2 - Identify and demonstrate how to control
			microbial growth.
			CO3 - Demonstrates and evaluate interaction
			between microbes, hosts and environment.
			CO4 - Understand microorganisms as a model
			system in life science studies and its importance in
			biotechnology.
			CO5 - Students learn different types of
			microorganism.
2.	IV	Biochemistr	CO1 - The course will help the students to
		y II	understand the abnormalities in the metabolism.
			CO2 - Students will learn about enzymes kinetics
			and types of inhibition as enzymes are important in
			catalyzing various reactions in the body.
			CO3 - Understanding of chemical and regulatory
			interrelationship between major cellular Synthetic
			and catabolic pathways.
			CO4 - Grain fundamental knowledge in
			biochemistry.

S.No	Paper	Paper Name	Course Outcomes
•	No.		
1.	VI	Immunology	CO1 - Ability to Conceptualize the basic mechanisms
			that regulate Immune responses and maintain tolerance.
			CO2 - Capability to provide an overview of the
			interaction between the immune system and pathogens.
			CO3 – Understand basic techniques for identifying
			antigen-antibody interaction.
			CO4 – Role of the immune system in both maintaining
			health and contributing to disease.
			CO5 – Understanding the reasons for immunization and
			aware of different vaccination.
2.	VII	Molecular	CO1 – Understanding the basics of central dogma of
		Biology	molecular biology.
			CO2 – Understand the chemical and molecular processes
			that occur in and between the cells.
			CO3 – Determine the structural organization of genes
			and will gain the knowledge of organization of genomes.
			CO4 – Understanding the concept of genetic code its
			features.

B.Sc II Year (III Sem)

B.Sc II YEAR (IV SEM)

S.No	Paper	Paper Name	Course Outcomes	
•	No.			
1	VIII	Recombinant	CO1 – Deep knowledge towards the modern approaches	
		DNA Technology	for genetically modified organism.	
			CO2 – Determine various techniques like bacterial	
			transformation, DNA sequencing technique, restriction	
			mapping and DNA fingerprinting in relation to their	
			application in medical and pharmaceutical field.	
			CO3 – Genetics engineering to impart deep knowledge	
			among students regarding mechanism of action and the	
			use of restriction enzymes, different probes for specific	
			genes of interest.	
2.	IX	Bioinfomatics	CO1 – Introduction to bioinformatics and its role in	
			biotechnology.	
			CO 2 – Different file formats uses in bioinformatics.	
			CO3 – How to align sequence, types of alignment based	
			on sequence length and number of sequence involved it.	
			CO4 – Students will learn different biological databases	
			present in bioinformatics.	
			CO5 - Learn how to search, visualize protein using	
			different visualization tool.	

B.Sc III	YEAR	(V	SEM)
-----------------	------	-----------	------

S.No	Paper	Paper Name	Course Outcomes	
•	No.			
1.	XI Animal		CO1 – Understand the basic concepts and terminology	
		Biotechnology	used in animal tissue culture.	
			CO2 – Understand and evaluate cell cultures constraints	
			and possibilities as an in vitro model.	
			CO3 – Demonstrates knowledge of basic cell culture	
			techniques.	
			CO4 – Knowledge of how establish a cell lines and its	
			maintenance.	
			CO5 - Demonstrates knowledge on design and how to	
			use the cell culture facilities.	
2.	XII	Plant	CO1 - Understand the basic concepts and terminology	
		Biotechnology	used in plant tissue culture.	
			CO2 - Understand the basic techniques to establish	
			types of in vitro cultures by themselves due to hand on	
			training in the subject.	
			CO3 – Concept and calculations for media preparation	
			very well learnt as the media used for different types of	
			culture were prepared by the students.	
			CO4 – The knowledge of tissue culture techniques is	
			used for designing projects, practical performance, and	
			preparation of glassware for practical.	

B.Sc III YEAR (VI SEM)

S.No	Paper	Paper Name	Course Outcomes
•	No.		
1.	XIII	Micribial	CO1 – Learn about the different types of fermentation
		Biotechnolog	processes, Fermenter design, different types of equipment used
		У	and microbiological processes.
			CO2 – Application of microorganisms in technological
			operation, substrate preparation and control of fermentative
			process and isolation of products.
			CO3 - Knowledge of equipment and design of sterilization
			cycle of large scale media in fermentation industry.
			CO4 – Give an account of design and operation of various
			bioreactors and downstream processes.
			CO5 - Give an account of important microbial/ enzymatic
			industrial processes.