DEPARTMENT OF INDUSTRIAL MICROBIOLOGY

INDUSTRIAL MICROBIOLOGY PROGRAM OUTCOMES, PROGRAM SPECIFIC OUTCOMES, COURSE OUTCOMES:

INDUSTRIAL MICROBIOLOGY PROGRAM OUTCOMES:

- PO1- Students will learn and inculcate the knowledge of using specific logic as they explore a wide rnge of contemporary subjects spanning various aspects of basic microbiology such as fundamentals of industrial microbiology, basic microbial techniques, food microbiology etc.
- PO2- Students will appreciate the biological diversity of microbial forms.
- PO3- Able to describe / explain the processes used by microorganisms for their replication, survival and interaction with their environment, hosts, and host populations.
- PO4- Analyze and become aware of the important role of microorganisms which play in maintenance of a clean and healthy environment.
- PO5- Acquire and demonstrate proficiency in good laboratory practices in a microbiological laboratory.
- PO6- Understand the various biotechnological applications of microorganisms industrywise commercially on large scale.
- PO7- Grasp and become familiar with scientific methodology, hypothesis generation and testing, design and execution of experiments.
- PO8- Develop strong oral and written communication skills through the effective presentation results as well as through seminars.

PROGRAM SPECIFIC OUTCOMES:

- PSO1- Understand the nature and relevance of various microbes to the surrounding environment including human life and mother nature becomes part of this branch of science.
- PSO2- Integrate in students knowledge about the ultrastructure of bacteria and other microbes by developing the skills of handling of microscope.
- PSO3- Students imbibe the knowledge of various scientists in microbiology and scope of various branches.

PSO4- Build afoundation and sound knowledge base of microbiological principles among future citizens of the country.

PSO5- Create career opportunities for the graduate students in manufacturing industry and research institutes at technical level.

COURSE OUTCOMES:

CLASS BSC I SEM -1

S.NO	PAPER CODE	PAPER NAME	COURSE OUTCOMES
1	IMB PAPER-	FUNDAMENTALS	CO1- Describe diversity of microorganisms and
	101	OFMICROBIOLOGY	contributions of scientists.
			CO2 –Classify the various microorganisms on the
			basis of taxonomic ranks.
			CO3- Explain the applied branches of microbiology
			and industrial importance of microbes.
			CO4- Describe the nutrition and culture techniques,
			medium and preservation of microbes.
2	IMB PAPER-	MICROBIAL	CO1- Determine the chemical processes that takes
	102	BIOCHEMISTRY	place in microbes like bacteria, fungi, algae,
			protozoa.
			CO2- Understand the basic aspects of
			bioenergetics.
			CO3- Classify the various biomolecules like
			carbohydrates, proteins, lipids, nucleic acids.
			CO4- Imparts knowledge about types and functions
			of biomolecules.
			CO5- Role of enzymes secreted by microbes in
			daily life.

CLASS-BSC I SEM -2

S.NO	PAPER CODE	PAPER NAME	COURSE OUTCOMES
1	IMB PAPER-	BASIC MICROBIAL	CO1- Understand fundamental aseptic techniques,
	201	TECHNIQUES	microscopy, micrometry.
			CO2 – Describe the microscopic enumeration of
			microorganisms.
			CO3- Analyze the various chromatographic
			techniques through experimental approach.
			CO4- Explain the basic instruments related to
			measurement of optical density like colorimeter,
			spectrophotometer etc.
			CO5- Understand the concept of fermenters and
			their types.
2	IMB PAPER-	MICROBIAL	CO1- Study the microbial cell structures, growth
	202	PHYSIOLOGY	and metabolism.
			CO2- Different models of cell membrane,
			biochemical properties and functions are
			undersatood.
			CO3- Types of cellular transport are demonstrated.
			CO4- Imparts knowledge about various respiratory
			pathways of microbes.
			CO5- Classify photosystems of bacteria.

CLASS -BSC II SEM -3

S.NO	PAPER CODE	PAPER NAME	COURSE OUTCOMES
1	IMB PAPER-	MICROBIAL	CO1- Understand the mechanisms of heritable
	301	GENETICS	information in microbes.
			CO2 – Imparts knowledge about molecular techniques
			used to modify genes and proteins
			CO3- Describe manipulations of bacteria, archae for
			fundamental research.
			CO4- Explain the mechanisms of gene expression,
			mutation, recombination and extrachromosomal
			inheritance in bacteria.
2	IMB PAPER-	ENVIRONMENTAL	CO1- Develop analysis and synthesis skills to use the
	302	MICROBIOLOGY I	properties of microbes to solve environmental
			problems.
			CO2- Explain soil as dynamic ecosystem.
			CO3- Designed to environmental concepts like
			biogeochemical cycles, distribution of microbes in air
			and water.
			CO4- Imparts knowledge about liquid solid
			impingemient devices to collect harmful bacteria.
			CO5- Fresh water and marine microbiology.

CIASS BSC-II SEM-4

S.NO	PAPER CODE	PAPER NAME	COURSE OUTCOMES
1	IMB PAPER-	FOOD	CO1- Gain knowledge about important pathogens
	401	MICROBIOLOGY	and spoilage microorganisms in food.
			CO2 – Aseptic handling, use of physical aqnd
			chemical preservation of food.
			CO3- Describe important food borne diseases with
			symtoms and control.
			CO4- Microbiological production of food through
			various microbes like beer, wine and understand
			prebiotics and probiotics.
2	IMB PAPER-	ENVIRONMENTAL	CO1- Analyze the concept of microbiology of
	402	MICROBIOLOGY II	domestic and waste water.
			CO2- Aware of water borne diseases.
			CO3- Solid waste processing and disposal, effect on
			public health and microbial pathogens in municipal
			waste.
			CO4- Imparts knowledge of biodegradation of
			environmental pollutants through important
			microbes like methanogens.

CIASS BSC-III SEM-5

S.NO	PAPER CODE	PAPER NAME	COURSE OUTCOMES
1	IMB PAPER-	AGRICULTRAL	CO1- Gain knowledge about plant associated
	501	MICROBIOLOGY	microbes and plant and animal diseases.
			CO2 – Imparts awareness about microbiology of
			soil fertility, such as microbial degradation of
			organic matter and soil nutrient transformations.
			CO3- Classification of plant diseases.
			CO4- Classify biopesticides and discuss major
			commercial biopesticides based on fungi, bacteria
			and viruses.
2	IMB PAPER-	FERMENTATION	CO1-Concept of Fermentation technology includes
	502	TECHNOLOGY &	its history and scope, important industrial microbes
		IPR	selection and improvement.
			CO2- Microbial growth kinetics, fermentation
			media and their sterilization concepts.
			CO3- Aware of basic design of fermenters and their
			important types like stirred tank, airlift and column.
			CO4- Imparts knowledge of Intellectual property
			rights, laws regarding microbes and industrial
			designs of fermenters.

CLASS BSC III -SEM-6

S.NO	PAPER CODE	PAPER NAME	COURSE OUTCOMES
1	IMB PAPER-	MICROBIAL	CO1- Describe about the importance of
	601	BIOFERTILIZERS	biofertilizers.
			CO2 – Identify bacterial, algal and fungal
			biofertilizer.
			CO3- Concept of rizosphere and isolation of
			rizosphere microflora.
			CO4- Assess the quality control of biofertilizers.
2	IMB PAPER-	MCROBIAL	CO1- Analyze the concept of microbes are used to
	602	BIOTECHNOLOGY	manufacture components of food and consumer
			products.
			CO2- Aware of biologics and biomaterials using
			recombinant DNA.
			CO3- Understand the concept of genetic
			engineering and restriction enzymes.
			CO4- Imparts knowledge of the use of bacteria to
			produce antibiotics and other pharmaceuticals, the
			use of yeast to produce food and beverages, and the
			use of fungi to decompose organic matter in
			landfills.