Physics Department

Course Outcomes

(2022-23)

Class	Course Code	Nomenclature	Course Outcomes
BSc Sem I	PH-101	Classical Mechanics & Theory of Relativity	1. Learn the concept of conservation of energy,
			momentum, angular momentum and apply them to
			understand the basic problems in physics.
			2. Understand and explain the Hamilton's variational
			principle, derive Lagrange's equation of motion from
			Hamilton's principle and be able to apply these principles
			to derive the Lagrangian and Hamiltonian for various
			simple mechanical systems such as Linear Harmonic
			oscillator, Simple pendulum, Atwood's machine.
			3. Differentiate between inertial and Non-inertial frame of
			references and Describe how fictitious forces arise in a
			non-inertial frame. Understand the importance of
			Michelson Morley's experiment in reference to special
			theory of relativity.
			4. Describe special relativistic effects and their effects on
			the mass and energy of a moving object and appreciate
			the nuances and important outcomes of Special Theory of
			Relativity.
BSc Sem 1	PH-102	Electricity, Magnetism	1. Explain and differentiate the vector and scalar
		and Electromagnetic theory	formalisms of electrostatics. Also be able to Apply
			Gauss's law of electrostatics to solve a variety of
			problems.
			2. Describe the important properties of magnetic field.
			Understand the properties and theories of dia-, para- &
			ferromagnetic materials.
			3. Derive Maxwell equations and understand the role of

			displacement current, scalar and vector potentials and
			boundary conditions at the interface between different
			media. The students will also be able to have basic idea
			about the propagation of electromagnetic waves.
	DU 201		
BSc Sem II	PH-201	Properties of matter and	1. Understand the application of both translational and
		Kinetic theory of gases	rotational dynamics motions simultaneously in analyzing
			rolling with slipping. Write the expression for the
			moment of inertia about the given axis of symmetry for
			different uniform mass distributions.
			2. Understand the principles and basic terms related to
			elasticity through the study of Young Modulus and
			modulus of rigidity.
			3. Explain the phenomena of simple harmonic motion
			and the properties of systems executing such motions.
			4. Appreciate the concepts and Applications of surface
			tension and also be able to understand simple principles
			of fluid flow and different equations governing fluid
			dynamics.
BSc Sem II	PH-202	Semiconductor Devices	1. Understand the complex electrical networks analysis
			using different network theorems.
			2. Understand the basic concepts and different
			applications of PN junction diode in different type of
			rectifiers, voltage regulators, solar cell, LED's etc.
			3. Describe the basic structure, working principle and
			characteristics of Bipolar Junction transistors.
			4. Understand and explain the classification of Amplifiers
			and the various coupling & feedback methods in BJT
			amplifiers.
Bsc Sem II	PH-203	Practical	1. Hands on experience with different instruments and
			appreciate the beauty of different concepts and related
	1		

			2. Verify some fundamental principles, effects and
			concepts of physics through Experiments.
			3. perform experiments related to mechanics (compound
			pendulum), rotational dynamics (Flywheel), elastic
			properties (Young Modulus and Modulus of Rigidity) and
			fluid dynamics (verification of Stokes law, Searle
			method) etc.
			4. Learn to present observations, results and analysis in
			suitable and presentable form.
			5. Understand the complex electrical networks analysis
			using different network theorems.
			6. Understand the basic concepts and different
			applications of PN junction diode in different type of
			rectifiers, voltage regulators, solar cell, LED's etc.
			7. Describe the basic structure, working principle and
			characteristics of Bipolar Junction transistors.
			8. Understand and explain the classification of Amplifiers
			and the various coupling & feedback methods in BJT
			amplifiers.
BSc Sem III	PH-301	Thermodynamics and	1. Learn about Kinetic interpretation of Temperature, the
		computer	real gas equations, Van der Waal equation of state and
		programmimg	Brownian motion.
			2. Learn the basic aspects of kinetic theory of gases,
			Maxwell-Boltzman distribution law, equitation of
			energies, mean free path of molecular collisions,
			viscosity, thermal conductivity, diffusion.
			3. Understand the basic concepts of thermodynamics, the
			first and the second law of thermodynamics,
			JouleThomson effect, Joule Thomson experiment, the
			concept of entropy and the theorems, calculationsof
			entropyofreversible& irreversibleprocess,T-Sdiagram and
			Nernstheatlaw.
BSc Sem III	PH-302	Wave and Optics-1	1. Have understanding of Interference - by Division of

			Wave front, by Division of Amplitude and Interference
			due to transmitted light & reflected light.
			2. Learn about Huygens-Fresnel's theory, diffraction at a
			straight edge and at a circular aperture, diffraction due to
			a narrow slit and due to a narrow wire.
			3. Understand and explain the Fraunhoffer diffraction,
			dispersive power of grating, Rayleigh's criterion and
			resolving power of telescope& grating.
BSc Sem IV	PH-401	Statistical Physics	1. Understand the concepts of microstate, macrostate,
			thermodynamic probability and also understand the
			studies of particles with their distinguishably or
			indistinguishably nature and conditions which lead to the
			three different distribution laws e.g. Maxwell-
			Boltzmann distribution, Bose-Einstein distribution and
			Fermi-Dirac distribution laws of particles.
			2. Learn the basic Postulates of statistical physics, Phase
			space, Division of Phase space into cells and be able to
			derive the expression for average speed, r.m.s. speed,
			average velocity, r. m. s. velocity, most probable energy
			& mean energy for Maxwellian distribution.
			3. Understand the need and application of
			QuantumStatistics:Bose-Einstein&Fermi-
			Dirac statistics and be able to articulate the connection as
			well as dichotomy between classical statistical mechanics
			and quantum statistical mechanics.
			4. Learn and understand the different law's and theory of
			specific heat of solids and their
			significance.
	PH-402	Wave and Optics -2	1. Learn the Fourier analysis of periodic functions and
			their applications in physical problems.
			2. Acquire knowledge of methods to solve partial
			differential equations with the examples of

			important partial differential equations in Physics.
			3. Understand the theories and laws of polarization along
			with understanding of the production and detection of
			(i)Planepolarizedlight (ii)Circularly
			Polarizedlightand (iii)Ellipticallypolarizedlight
	PH-403	Practical	1. Have understanding of Interference - by Division of
			Wave front, by Division of Amplitude and Interference
			due to transmitted light & reflected light.
			2. Learn about Huygens-Fresnel's theory, diffraction at a
			straight edge and at a circular aperture, diffraction due to
			a narrow slit and due to a narrow wire.
			3. Understand and explain the Fraunhoffer diffraction,
			dispersive powerofgrating, Rayleigh's criterion and
			resolvingpower of telescope& grating
BSc Sem V	PH-501	Quantum and Laser	1. Know main aspects of the inadequacies of classical
		Physics	mechanics and understand historical development of
			quantum mechanics and understand the theory of
			quantum measurements, wave packets and uncertainty
			principle.
			2. Understand the central concepts of quantum
			mechanics: wave functions, Interpretation
			of Wave Function, momentum and energy operator,
			expectation values, the Schrodinger
			equation, time dependent and time independent cases,
			probability density, the normalization techniques, Eigen
			functions, Eigen values and their significance.
			3. Understanding the behavior of quantum particle
			encountering a i) barrier & ii) potential.
			4. Solve Schrodinger equation for ground state energy
			and wave functions of various
			simple quantum mechanical one dimensional and three
			dimensional potentials.
			5. Familiar with optical phenomena and different

			concepts related laser physics.
			6. Qualitative understanding of basic lasing mechanism,
			types of Lasers, characteristics of Laser Light, types of
			Lasers.
			7. Understand and appreciate the applications of Lasers in
			developing LED, Holography, in materials processing, in
			Medicine, Industry and Military.
	PH-502	Nuclear Physics	1. Learn about nuclear composition & nuclear properties
			like nuclear size, spin, parity, statistics, magnetic dipole
			moment, quadruple moment and also be able to
			understand the basics of experimental
			techniques/methods to determine the mass and
			size of nuclei.
			2. Learn about the emission of alpha, beta and gamma
			rays, outlines of theory of alpha decay and Pauli's theory
			of beta decay with the neutrino hypothesis. Compton
			scattering and pair production, energy loss due to
			ionization.
			3. Understand the principles and basic constructions of
			particle accelerators and the detectors of nuclear
			radiations.
			4. Learn the basic aspects of nuclear reactions, the Q-
			value of such reaction & its derivation from conservation
			laws and understand the Principle, construction, working
			and uses of Nuclear fission and fusion reactors.
BSc Sem VI	PH-601	Solid state and	1. Have brief idea about crystalline and amorphous
		Nanophysics	substances, about lattice, unit cell,
			primitive cell, miller indices, Bravais lattices in two &
			three dimensions and crystal structures of Zinc Sulphide,
			Sodium Chloride and Diamond.
			2. Acquire knowledge about X-ray diffraction, Bragg's
			Law and experimental X-ray diffraction methods and
			about the reciprocal lattice to a simple cubic lattice, b.c.c.

		and f.c.c. lattice.
		3. Acquire knowledge about the electronic properties like
		electrical conductivity, resistivity, thermal conductivity,
		heat capacity etc. of metallic solids.
		4. Understand the basic idea about superconductors, their
		classifications and practical
		applications.
 PH-602	Atomic and Molecular	1. Acquire knowledge about the historical background
	Spectroscopy	and developments of atomic spectroscopy through the
		study of spectral series in Hydrogen atom, effect of
		nuclear motion on line spectra (correction of finite
		nuclear mass), short comings of Bohr's
		theory, Wilson sommerfeld quantization rule,
		Sommerfeld's extension of Bohr's model, Sommerfeld
		relativistic correction, Short comings of Bohr-
		Sommerfeld theory and finally Vector atom model.
		2. Understand and explain the vector atom model, various
		coupling schemes and atomic spectra of one and two
		electron atoms.
		3. Explain the influence on the spectra of atoms in the
		presence of external applied electric and magnetic field
		i.e. Zeeman effect, Paschen-Back effect, Stark effect.
PH-603	Practical	1. Hands-on experience of using various optical
		instruments and making finer measurements of
		wavelength of light using Newton Rings experiment,
		Fresnel Biprism etc. and resolving power of optical
		equipment.
		2. Understand various optical phenomena, principles,
		workings and applications optical instruments through
		Experiments.
		3. Learn to present observations, results and analysis in
		suitable and presentable form.